AN X-RAY CRYSTALLOGRAPHIC STUDY OF 5-0-ACETYL-1,2:3,4-DI-0-ISOPROPYLIDENE-α-D-GALACTOSEPTANOSE*

VERONICA J. JAMES AND JOHN D. STEVENS

Schools of Physics and Chemistry, The University of New South Wales, P.O. Box 1, Kensington, N.S.W. 2033 (Australia)

(Received September 5th, 1979; accepted for publication in revised form, November 27th, 1979)

ABSTRACT

Three-dimensional, single-crystal X-ray diffraction methods were used to determine the solid-state structure of 5-O-acetyl-1,2:3,4-di-O-isopropylidene- α -D-galactoseptanose. The crystals are tetragonal with cell dimensions: a = b = 9.571(5), c = 16.944(5) Å, $\alpha = \beta = \gamma = 90^{\circ}$, and z = 4. The space group is P4₁. The structure was solved by direct methods and refined by least-squares techniques to give a conventional discrepancy-factor, R, of 0.040. The seven-membered ring is close to a boat conformation, $^{1,2,5}B$.

INTRODUCTION

5-O-Acetyl-1,2:3,4-di-O-isopropylidene- α -D-galactoseptanose (1) has been the subject of a ¹H-n.m.r. spectroscopic study^{1,2} which indicated that its solution-state conformation is most likely a twist boat,^{1,2} $TB_{3,4}$. As both X-ray and ¹H-n.m.r. studies on 1,2:3,4-di-O-isopropylidene- α -D-glucoseptanose 5-chloroacetate³ (2) and 5-acetate⁴ (3) showed that molecules of these compounds adopt the ^{4,5} $TC_{6,0}$ conformation in the solid state and probably also in solution, it was of interest to determine the solid-state conformation of 1.

EXPERIMENTAL

The title compound 1 has been prepared¹ from 5-O-benzyl-1,2-O-isopropylidene-4-O-p-tolylsulfonyl- α -D-glucoseptanose by displacement of the p-tolylsulfonyloxy group by using sodium benzoate followed by conventional deprotection of O-4 and O-5, acetonation, and acetylation. The details of these transformations will be presented elsewhere². Needle crystals of 1, m.p. $103-104^{\circ}$, were obtained from a solution in light petroleum (b.p. $60-80^{\circ}$).

Crystal data. — Oscillation and Weissenberg photographs showed the crystals to be tetragonal. Systematic absences among the reflections indicate the space group

^{*}Dedicated to Professor Stephen J. Angyal on the occasion of his retirement.

to be P4₁. The crystal used for data collection was prismatic with sides of 0.225, 0.2, and 0.375 mm in the 100, 010, and 001 directions, respectively. Single-crystal diffractometry yielded the following lattice constants: a = b = 9.571(5) and c = 16.944(5) Å. There are four formula units per unit cell.

Intensity data. — Intensity measurements were carried out on a computer-controlled Siemens A.E.D. diffractometer. Integrated intensities for 1713 independent reflections (θ up to 70°) were measured by using CuK α radiation and a $\theta/2\theta$ scan technique⁵. These intensities were corrected for background and absorption⁶, and for Lorentz and polarisation factors. The reflections were assigned standard deviations of $\sigma(I)$, where $\sigma(I) = [I_{\text{scan}} + I_{\text{bkg}}]^{1/2}$. In the absorption correction, a linear absorption-coefficient of 7.387 cm⁻¹ was used; this value was obtained from the calculated density (1.06 g cm⁻³) and the mass absorption-coefficients for CuK α radiation⁷.

Structure determination and refinement. — All non-hydrogen atoms were located by direct methods, using the program MULTAN of Germain, Main, and Woolfson (1971). Eventually all hydrogen atoms were located from a Fourier difference-synthesis and the structure was refined by full-matrix, least-squares procedures⁸. The hydrogen-atom positional parameters were included in the refinement, but the

TABLE I

PARAMETERS FOR NON-HYDROGEN ATOMS AND THEIR STANDARD DEVIATIONS

Atom	x/a	y/b	z/c	β_{11}^{a}	eta_{22}^a	eta_{33}^a	eta_{12}^a	eta_{13}^a	eta_{23}^a
O-1	0.7607(3)	0.7474(4)	0.4083	153(4)	475(8)	36(1)	123(5)	9(2)	15(2)
O-2	0.5421(3)	0.8228(3)	0.3792(2)	155(3)	311(6)	30(1)	90(4)	-5(1)	-1(2)
O-3	0.3453(2)	0.9437(3)	0.4867(2)	121(3)	195(4)	37(1)	33(3)	-12(1)	-20(1)
0-4	0.3640(2)	0.9354(2)	0.6176(2)	127(3)	145(3)	37(1)	15(2)	1(1)	6(1)
O-5	0.5863(2)	0.8525(2)	0.7140(2)	172(3)	127(3)	30(1)	-15(2)	-10(1)	7(1)
O-6	0.7634(2)	0.8703(3)	0.5243(2)	113(3)	208(4)	40(1)	-15(3)	-6(1)	29(2)
O-7	0.4893(3)	0.6421(3)	0.7289(2)	230(4)	158(3)	47(1)	-44(3)	21(2)	5(2)
C-1	0.6966(4)	0.7642(4)	0.4805(2)	127(4)	203(6)	34(1)	38(4)	1(2)	18(2)
C-2	0.5440(3)	0.8020(4)	0.4619(2)	113(4)	143(4)	32(1)	10(3)	-1(2)	7(2)
C-3	0.4929(3)	0.9350(3)	0.4997(2)	107(4)	118(4)	31(1)	2(3)	-3(2)	8(2)
C-4	0.5043(3)	0.9461(3)	0.5908(2)	128(4)	95(3)	33(1)	-6(3)	-6(2)	1(2)
C-5	0.5930(3)	0.8344(4)	0.6286(2)	132(4)	122(4)	28(1)	-3(3)	-9(2)	6(2)
C-6	0.7463(4)	0.8516(5)	0.6071(2)	125(4)	183(5)	34(1)	-17(4)	-16(2)	20(2)
C-7	0.6699(3)	0.7835(3)	0.3456(2)	119(4)	143(4)	31(1)	16(3)	1(2)	-7(2)
C-8	0.7338(16)	0.9036(11)	0.3061(12)	238(14)	332(21)	167(10)	-23(14)	13(9)	145(14)
C-9	0.6480(7)	0.6541(8)	0.2989(7)	191(7)	409(13)	297(8)	96(8)	-61(7)	-258(9)
C-10	0.2801(3)	0.9915(3)	0.5557(2)	126(4)	119(4)	37(2)	20(3)	-2(2)	-9(2)
C-11	0.2752(5)	1.1493(4)	0.5575(3)	162(5)	133(4)	60(2)	18(4)	-13(3)	-5(3)
C-12	0.1361(4)	0.9293(5)	0.5610(4)	137(5)	136(5)	77(2)	19(4)	4(3)	-15(3)
C-13	0.5319(3)	0.7483(4)	0.7568(2)	98(4)	137(4)	38(1)	19(3)	6(2)	10(2)
C-14	0.5350(5)	0.7798(6)	0.8413(3)	149(5)	244(7)	34(1)	1(5)	-2(2)	10(3)

^aThe values have been multiplied by 10⁴. The temperature factor is in the form: $T = \exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + \beta_{12}hk + \beta_{13}hl + \beta_{22}kl)]$.

TABLE II
HYDROGEN-ATOM POSITIONAL PARAMETERS

Atom	x/a	y/b	z/c
H-C-1	0.712(3)	0.680(4)	0.511(2)
H-C-2	0.479(3)	0.713(3)	0.475(2)
H-C-3	0.537(3)	1.013(3)	0.473(2)
H-C-4	0.540(3)	1.036(3)	0.605(2)
H-C-5	0.561(3)	0.737(3)	0.613(2)
H ¹ C-6	0.800(3)	0.764(4)	0.623(2)
H11_C-6	0.795(3)	0.934(3)	0.631(2)
H1C-8	0.733(14)	1.021(12)	0.330(10)
H11-C-8	0.828(6)	0.891(7)	0.297(5)
H111_C-8	0.679(6)	0.897(7)	0.270(5)
H ¹ C-9	0.736(5)	0.651(6)	0.267(4)
H ¹¹ -C-9	0.639(6)	0.570(7)	0.334(6)
H111-C-9	0.564(5)	0.662(6)	0.264(5)
H ¹ -C-11	0.374(4)	1.179(3)	0.558(2)
H ¹¹ _C-11	0.242(4)	1.179(4)	0.601(2)
H ¹¹¹ -C-11	0.227(4)	1.181(4)	0.512(2)
H1-C-12	0.142(4)	0.847(4)	0.565(3)
H11-C-12	0.081(4)	0.970(4)	0.521(3)
H111_C-12	0.090(4)	0.971(4)	0.608(3)
H1-C-14	0.584(4)	0.717(5)	0.870(2)
H11_C-14	0.596(4)	0.860(5)	0.860(2)
H ¹¹¹ _C-14	0.459(4)	0.777(4)	0.864(2)

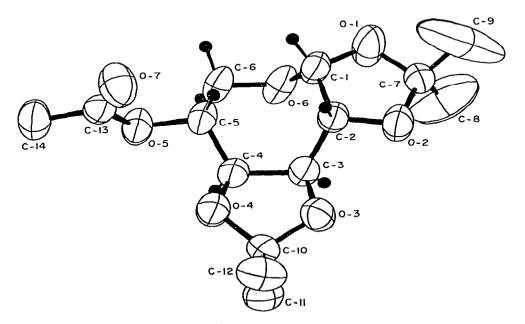


Fig. 1. ORTEP plot of the thermal ellipsoids, showing the atom-numbering system for 1.

thermal parameters for these atoms were kept fixed at the values of the atoms with which they were most closely associated. An isotropic extinction-parameter⁹ was introduced in the final stages of the refinement. Individual weights w_{hkl} , equal to the reciprocal of the square of the estimated standard-deviation of the measurement, $\sigma(I)$, were used throughout the refinement, and the function that was minimised was $\sum w(|F_O| - |F_C|)^2$. A final, conventional discrepancy-factor of 0.040 was obtained. The scattering factors used were those of Doyle and Turner¹⁰, and the anomalous scattering-factors for oxygen atoms were taken from the data of Cromer¹¹. The final positional and thermal parameters are given in Tables I and II and the molecular structure and atom-numbering system are shown in Fig. 1.

RESULTS AND DISCUSSION

Bond distances and bond angles. — Bond distances and bond angles involving non-hydrogen atoms are given in Tables III and IV respectively. The mean standard-deviation in the bond lengths is 0.005 Å and in the bond angles 0.3°. An interesting feature of the ring C-C bond-distances is that C-1-C-2 and C-3-C-4 are significantly greater than the remainder. A similar feature has been found for 5-O-acetyl-1,2:3,4-di-O-isopropylidene- α -D-glucoseptanose (3), in which the seven-membered-ring C-C bonds that are also involved in the dioxolane rings are greater than the other C-C bonds⁴.

Of the various C-O bonds, C-1-O-1 is significantly shorter than other C-O single bonds. A similar effect was noted³ for the structure of 5-O-chloroacetyl-1,2:3,4-di-O-isopropylidene- α -D-glucoseptanose, and is in keeping with the generally short C-1-O bonds in aldopyranosides, for which the C-5-O-5-C-1-O-1 torsional angle is approximately 180°. The phenomenon has been accounted for by molecular-orbital calculations on dimethoxymethane^{12,13}. It is of interest to compare this region of the structure with the corresponding region in 4,5-di-O-acetyl-3-O-methyl- α -D-guloseptanose¹⁴ (4). The conformation of 4 is such that the O-1-C-1-O-6-C-6

TABLE III

INTERATOMIC DISTANCES AND STANDARD DEVIATIONS (Å)

Bond	Distance	Bond	Distance	Bond	Distance
C-1-C-2	1.537(5)	C-2-O-2	1.415(4)	O-4-C-10	1.426(4)
C-2-C-3	1.507(5)	O-1-C-7	1.415(4)	C-10-C-11	1.511(5)
C-3-C-4	1.551(5)	O-2-C-7	1.401(4)	C-10-C-12	1.504(6)
C-4-C-5	1.508(5)	C-7-C-8	1.464(9)	C-5-O-5	1.459(4)
C-5-C-6	1.521(6)	C-7C-9	1.485(10)	O-5-C-13	1.339(4)
C-6-O-6	1.423(4)	C-3-O-3	1.432(4)	C-13-O-7	1.193(5)
O-6-C-1	1.411(5)	C-4-0-4	1.421(4)	C-13-C-14	1.464(6)
C-1-O-1	1.378(5)	O-3-C-10	1.402(5)		

TABLE IV

INTERATOMIC ANGLES AND STANDARD DEVIATIONS (DEGREES)

Bond	Angle (°)	Bond	Angle (°)
O-6-C-1-C-2	111.7(3)	O-3-C-10-C-12	109.2(3)
O-6-C-1-O-1	110.4(4)	O-3-C-10-O-4	103.9(2)
C-2-C-1-O-1	105.6(4)	C-11-C-10-C-12	111.5(5)
C-1-O-1-C-7	111.4(3)	C-11-C-10-O-4	112.3(3)
O-1-C-7-C-8	106.2(3)	C-12-C-10-O-4	108.9(4)
O-1-C-7-C-9	106.5(6)	C-10-O-4-C-4	105.6(3)
O-1-C-7-O-2	107.3(3)	O-4-C-4-C-3	104.3(3)
C-8-C-7-C-9	118.1(3)	O-4-C-4-C-5	110.1(3)
C-9-C-7-O-2	108. <i>5</i> (5)	C-3-C-4-C-5	114.5(3)
C-8-C-7-O-2	109.9(5)	C-4-C-5-O-5	108.2(3)
C-7-O-2-C-2	110.7(3)	C-4-C-5-C-6	111.4(3)
C-1-C-2-O-2	104.4(3)	O-5-C-5-C-6	105.5(3)
C-1-C-2-C-3	114.8(3)	C-5-O-5-C-13	117.8(3)
O-2-C-2-C-3	107.3(3)	C-14-C-13-O-5	111.6(4)
C-2-C-3-C-4	117.3(3)	O-7-C-13-O-5	123.6(3)
C-2-C-3-O-3	107.7(3)	C-14-C-13-O-7	124.8(3)
C-4-C-3-O-3	102.6(3)	C-5-C-6-O-6	111.1(3)
C-3-O-3-C-10	109.3(3)	C-6-O-6-C-1	112.1(3)
O-3-C-10-C-11	110.9(4)		

TABLE V
TORSIONAL ANGLES AND STANDARD DEVIATIONS (DEGREES)

Angle (°)	Bond	Angle (°)	Bond
9.6(4)	0-3-C-3-C-4-0-4	-5.4(5)	O-6-C-1-C-2-C-3
-29.5(3)	C-3-C-4-O-4-C-10	-56.3(4)	C-1-C-2-C-3-C-4
38.8(3)	C-4-O-4-C-10-O-3	12.3(5)	C-2C-3C-4C-5
-32.9(3)	O-4-C-10-O-3-C-3	68.3(4)	C-3-C-4-C-5-C-6
14.2(4)	C-10-O-3-C-3-C-4	-48.6(5)	C-4-C-5-C-6-O-6
73.2(4)	O-2-C-2-C-3-O-3	-52.6(5)	C-5-C-6-O-6-C-1
-115.1(6)	C-7-O-1-C-1-O-6	88.9(4)	C-6-O-6-C-1-C-2
-153.9(4)	O-1-C-1-O-6-C-6	-8.3(5)	O-1-C-1-C-2-O-2
0.1(5)	O-7-C-13-O-5-C-5	8.0(5)	C-1-C-2-O-2-C-7
-122.7(3)	C-13-O-5-C-5-C-6	-4.9(4)	C-2-O-2-C-7-O-1
118.0(3)	C-13-O-5-C-5-C-4	-0.9(8)	O-2-C-7-O-1-C-1
		5.7(6)	C-7-O-1-C-1-C-2

torsional angle is 63°, that is, the acetal geometry is similar to that in an α -D-aldopyranoside. The C-1-O-1 bond-length in 4 is 1.401 Å, which is close to the mean value found for α -D-aldopyranosides¹².

Bond angles within the septanose ring are all greater than 109.5°. Such large angles have also been found for all of the septanose compounds that have been

172 V. J. JAMES, J. D. STEVENS

studied thus far: 2 (ref. 3), 3 (ref. 4), 4 (ref. 14), methyl α -D-glucoseptanoside tetra-acetate¹⁵, ethyl 2,3:4,5-di-O-isopropylidene-1-thio- β -D-glucoseptanoside¹⁶, 3-O-acetyl-1,2:4,5-di-O-isopropylidene- α -D-glucoseptanose¹⁷, methyl β -D-glucoseptanoside tetraacetate¹⁸, methyl 2,3:4,5-di-O-isopropylidene- α -D-glucoseptanoside²⁰, and methyl α -D-galactoseptanoside tetraacetate²¹.

Energy calculations on cycloheptane showed²² that, for all of the four conformations corresponding to minima in the energy-geometry profile, bond angles within the ring range from 113 to 118°. In a study that is rather more pertinent to the present work, Bocian and Strauss²³ determined the geometries of the low-energy conformations of oxepan. With the exception of one angle in a twist-boat form, the angles within the rings are equal to or greater than the tetrahedral angle.

MOLECULAR CONFORMATION

A selection of torsional angles is given in Table V.

The septanose ring. — In contrast to the structurally related compound 2 in which the seven-membered ring has a twist-chair conformation in the solid state³, the conformation of the septanose ring in 1 may be described as a boat, $^{1,2,5}B$ (see ref. 24 for nomenclature) in which the pseudoplane of symmetry passes through C-5. Table VI gives the torsional angles of the septanose ring for 1, together with the torsional angles for the boat-2 conformation^{25,26} of oxepan. A comparison of these values shows that the signs of the torsional angles for 1 are correct for a boat conformation, and the magnitudes of the torsional angles in 1 in the region of the molecule C-5, C-6, O-6, C-1, and C-2 agree well with the oxepan values. The torsional angle C-2-C-3-C-4-C-5 is 22° less than the oxepan value, which shows that the septanose ring is flattened in this region. Inspection of molecular models shows that a decrease of the C-2-C-3-C-4-C-5 torsional angle results in a decrease of the C-1-C-2-C-3-C-4 torsional angle and an increase in the C-3-C-4-C-5-C-6 torsional angle. The observed values are consistent with these changes. The effect of the ringflattening in the C-3-C-4 region is to move the septanose ring-conformation towards the twist-boat, ${}^{1,2}TB_{3,4}$. This conformation corresponds to the oxepan twist-boat A of Bocian and Strauss²⁵; however, the torsional-angle values for that conformation are not available for comparison. We suggest that the septanose ring-conformation can best be described as a boat, 1,2,5B, flattened in the region of C-3 and C-4. Table VII gives values for displacements of atoms from selected planes. It is of interest to compare the torsional angles of the septanose ring and the displacements of C-1, C-2, and C-5 from the least-squares plane through the other four ring-atoms of 1 with the corresponding values (included in Tables VI and VII) for another sevenmembered-ring sugar derivative, namely, methyl 2,3:4,5-di-O-isopropylidene-α-Dalloseptanoside (5), in which the septanoside ring has been described¹⁹ as having a boat conformation, 2.3.6B. These values show that the seven-membered rings in 1 and 5 have very similar conformations. This result is noteworthy because, whereas

TABLE VI

COMPARISON OF OBSERVED RING-TORSIONAL ANGLES (DEGREES) FOR 1, AND THOSE COMPUTED FOR THE
BOAT-2 CONFORMATION OF OXEPAN AND THE OBSERVED VALUES FOR 5

Bond	Observed for 1 (°)	Computed for oxepan, boat-2 (°)	Observed for 5 (°)
C-1-C-2	-5	-2	5 (C-2-C-3)
C-2-C-3	—56	74	60 (C-3-C-4)
C-3-C-4	12	34	-16 (C-4-C-5)
C-4-C-5	68	<i>5</i> 6	-65 (C-5-C-6)
C-5-C-6	-49	-53	49 (C-6-O-6)
C-6-O-6	-53	-47	40 (O-6-C-1)
O-6-C-1	89	86	69 (C-1-C-2)

TABLE VII

DISTANCES OF ATOMS FROM LEAST-SQUARES PLANES (Å)

_		Septanose		Atom
5		1		
0.071		0.003a	1.086	C-1
		0.005^{a}		O-1
		-0.005^a		C-7
		0.003a		O-2
1.034		0.129	1.173	C-2
1.159	0.000^a		0.0834	C-3
	0.000^{a}			O-3
	0.326			C-10
	-0.229			O-4
0.0664	0.000^{a}		-0.089^a	C-4
-0.078^{a}			0.671	C-5
0.600			0.095a	C-6
0.083			-0.089a	O-6

^aAtoms included in calculation of the plane.

the 1,2-O-isopropylidene ring in 1 occupies the favourable "equatorial" disposition on the septanose ring, the 2,3-O-isopropylidene ring in 5 occupies the "axial" disposition on the septanoside ring (that is, it is *endo* to the seven-membered ring).

The dioxolane rings. — The dioxolane ring involving O-1 is unusual in that none of the torsional angles is greater than 8.3°, which implies that the ring is close to being planar. In a survey²⁷ of the geometry of more than forty 2,2-dimethyl-1,3-dioxolane rings, it was found that only the 1,2-dioxolane ring in 1 appeared to be nearly planar. Examination of the thermal parameters for C-8 and C-9 (see also Fig. 1) shows that these methyl groups librate to a much greater extent than the methyl groups on C-10. Similarly, O-1 and, to a lesser extent, O-2 show abnormally large thermal parameters. It would appear, thus, that the flatness of this dioxolane ring is more apparent than real, the final shape representing the mean of several more-

puckered rings. The large thermal parameters of C-8 and C-9 also account for the shortness of the C-7-C-8 and C-7-C-9 bonds.

The other dioxolane ring, involving C-3 and C-4, exists as a twist form in which C-10 and O-4 are displaced on opposite sides of the three-atom plane O-3-C-3-C-4 (see Table VII).

The acetoxyl group. — The torsional angles for the acetoxyl group show that this is planar, with the carbonyl group eclipsing C-5-H-5, an arrangement that is commonly observed for O-acetyl groups²¹.

ACKNOWLEDGMENTS

We are grateful to Dr. G. E. Driver for supplying the compound used in this work, to Mr. D. C. Craig for collecting the X-ray data, and to Professor H. L. Strauss for providing further information²⁶ on oxepan conformations.

REFERENCES

- 1 G. E. DRIVER, Ph.D. Thesis, The University of New South Wales, 1972.
- 2 G. E. DRIVER AND J. D. STEVENS, unpublished results.
- 3 J. Jackobs, M. A. Reno, and M. Sundaralingam, Carbohydr. Res., 28 (1973) 75-85.
- 4 R. A. WOOD, V. J. JAMES, A. D. RAE, J. D. STEVENS, AND F. H. MOORE, unpublished results.
- 5 V. W. ARNDT AND B. T. H. WILLIS, Single Crystal Diffractometry, Cambridge University Press, London, 1966.
- 6 W. R. Busing and H. A. Levy, Acta Crystallogr., 10 (1957) 180-182.
- 7 International Tables for X-ray Crystallography, Vol. II, Kynoch Press, Birmingham, U.K., 1959, pp. 291-312.
- 8 W. R. Busing, K. O. Martin, and H. A. Levy, ORFLS, Report ORNL-TM-305, Oak Ridge National Laboratory, TN, U.S.A., 1962.
- 9 A. C. LARSON, in F. R. AHMED (Ed.), Crystallographic Computing, Munksgaard, Copenhagen, 1970, pp. 291-294.
- 10 P. A. DOYLE AND P. D. TURNER, Acta Crystallogr., Sect. A., 24 (1968) 390-397.
- 11 D. T. CROMER, Acta Crystallogr., 18 (1965) 17-23.
- 12 G. A. Jeffrey, J. A. Pople, J. S. Binkley, and S. Vishveshware, J. Am. Chem. Soc., 100 (1978) 373-379.
- 13 D. G. GORENSTEIN AND D. KAR, J. Am. Chem. Soc., 99 (1977) 672-677.
- 14 J. F. McConnell and J. D. Stevens, Cryst. Struct. Commun., 2 (1973) 619-623.
- 15 J. F. McConnell and J. D. Stevens, J. Chem. Soc., Perkin Trans. 2, (1974) 345-348.
- 16 J. P. BEALE, N. C. STEPHENSON, AND J. D. STEVENS, Acta Crystallogr., Sect. B, 28 (1972) 3115–3121.
- 17 E. T. PALLISTER, N. C. STEPHENSON, AND J. D. STEVENS, Chem. Commun., (1972) 98-99.
- 18 J. P. BEALE, Ph.D. Thesis, The University of New South Wales, 1970.
- 19 D. C. CRAIG, N. C. STEPHENSON, AND J. D. STEVENS, Cryst. Struct. Commun., 3 (1974) 77-81.
- 20 D. C. CRAIG, N. C. STEPHENSON, AND J. D. STEVENS, Cryst. Struct. Commun., 8 (1979) 225-229.
- 21 P. W. R. CORFIELD, J. D. MOKREN, P. L. DURETTE, AND D. HORTON, Carbohydr. Res., 23 (1972) 158-162; compare W. Choong, J. F. McConnell, N. C. Stephenson, and J. D. Stevens, Aust. J. Chem., 33 (1980), in press.
- 22 J. B. HENDRICKSON, J. Am. Chem. Soc., 89 (1976) 7036-7043.
- 23 D. F. BOCIAN AND H. L. STRAUSS, J. Am. Chem. Soc., 99 (1977) 2876-2882.
- 24 Rules for Conformational Nomenclature for Five- and Six-Membered Rings in Monosaccharides and their Derivatives, J. Chem. Soc. Chem. Commun., (1973) 505-508; compare J. E. Stoddart, Stereochemistry of Carbohydrates, Wiley, New York, 1971, pp. 102-104.
- 25 See Fig. 7 of ref. 23, p. 2879.
- 26 H. L. STRAUSS, personal communication, 1977, in which the numbering system for bond angles and torsional angles was clarified.
- 27 J. F. McConnell, A. Schwartz, and J. D. Stevens, unpublished data.